BRAIN TUMOR
CLASSIFICATION USING
CONVOLUTIONAL NEURAL
NETWORK

AUTHORS: PAPER ID: 455

1. Sunanda Das
2. O. F. M. Riaz Rahman Aranya
3. Nishat Nayla Labiba

Dept. of Computer Science and Engineering,
Khulna University of Engineering & Technology



INTRODUCTION

OBIJECTIVES

DATASET COLLECTION & DESCRIPTION

PRE-PROCESSING

CLASSIFICATION USING CNN

PERFORMANCE EVALUATION

CONLUSION

REFERENCES

OUTLINE

o
g o
------



INTRODUCTION

“*BRAIN TUMOR IS ONE OF THE MOST FEARED DISEASES IN MEDICAL SCIENCE.

“*IT IS THE ABNORMAL GROWTH OF CELLS IN THE BRAIN.

**THERE ARE MANY KINDS OF BRAIN TUMOR.

“*SOME ARE CANCEROUS AND SOME ARE NOT.

“*SURVIVAL RATES OF BRAIN TUMOR VARY ACCORDING TO THE TYPE OF THE BRAIN TUMOR
& AGE OF THE PATIENT.
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OBJECTIVES

**CLASSIFY THREE TYPES OF BRAIN TUMOR ACCURATELY.

*+TO ENSURE PROPER TREATMENT IN TIME.

**CONVOLUTIONAL NEURAL NETWORK IS USED.
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DATASET COLLECTION &
DESCRIPTION
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HISTOGRAM EQUALIZATION

Old image New Image

HISTOGRAM IS A GRAPHICAL REPRESENTAION OF THE
INTENSITY DISTRIBUTION OF AN IMAGE[13]

1

1
HISTOGRAM EQUALIZATION IS A METHOD TO PROCESS :
IMAGES IN ORDER TO ADJUST THE CONTRAST OF THE E
I
I
!

New Histogram

IMAGE BY MODIFYING THE INTENSITY DISTRIBUTION OF THE
HISTOGRAM[13]

g 88888

-é

(%)
U
)
m
>
O
o
c
|
-
L
m
<
o
wn
-
M
~
m
jo
Cc
m
2
|
Z
|
m
<
4]
—
<
<
>
-
Cc
m
wn
=
&

_

Fig. 1. Histogram equalization of an image[12]
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(a) Original mrlage (512x512)

| (d) Equalized image (112x112)
Fig. 2. Stepwise pre-processing outcome for tumor classification

PRE-PROCESSING
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(0). Histogram of resized image (]l‘ 112)

(¢). Histogzram of Sltered image (112<112)
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Fig. 3. Histogram of different pre-processing step image
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CLASSIFICATION USING CNN

“*MULTI-LAYER NEURAL NETWORK

)
:  CONVOLUTIONAL
; NEURAL NETWORK

|

|

|

I

! “*AN EFFECTIVE RECONGINTION ALGORITHM APPLIED
E IN PATTERN RECOGNITION & IMAGE PROCESSING [8]
|

**DECREASE THE NUMBER OF PARAMETERS
NEEDED FOR THE MODEL COMPARED TO ANN
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CLASSIFICATION USING CNN

“*A SEQUENCE OF CONVOLUTION & POOLING OPERATION
FOLLOWED BY A FULLY CONNECTED LAYER.

“*CONVOLUTIONAL FILTER (C1) ON INPUT IMAGE(l) TO
GENERATE A FEATURE MAP.

**FEAUTERS GENERATED BY C1 FED IN FIRST SUBSAMPLING
LAYER S1.

“*MAX POOLING IS USED IN SUBSAMPLING LAYER WITH A
WINDOW SIZE OF 2x2.

nodes

112x112 32@110x110 32@55x%55 64@53%53 64@26%26 128@24x24
image feature maps feature maps feature maps feature maps feature maps
I Cl1 S1 C2 S2 C3

Fig. 4. CNN architecture of the model (I, C, S represent input image, convolution and subsampling respectively) 08
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CLASSIFICATION USING CNN

“*IN C2,64 CONVOLUTIONAL FILTERS ARE USED & RESULT IS
FED TO S2 WITH 2x2 WINDOW SIZE.

“*IN C3, 128 FILTERS ARE USED & RESULT IS FED TO A DENSE
LAYER WITH 128 NODES.

“*FINALLY A DENSE LAYER WITH SOFTMAX ARE USED FOR THE
CLASSIFICATION.

“*A DROPOUT LAYER IS USED AFTER EACH SUBSAMPLING TO
REDUCE OVERFITTING[9].

nodes

112x112 32@110x110 32@55x%55 64@53%53 64@26%26 128@24x24
image feature maps feature maps feature maps feature maps feature maps
I Cl1 S1 C2 S2 C3

Fig. 5. CNN architecture of the model (I, C, S represent input image, convolution and subsampling respectively) 09
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—— Training loss (0.00534)
- Validation loss (0.23738)
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Fig. 6. Loss and Accuracy curve for 100 epochs
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PERFORMANCE
EVALUATION

= Training accuracy (0 99854)
- Validation accuracy (0.95517)

0

20

40

“*ADAM OPTIMIZER IS USED AFTER DEVELOPING THE CNN MODEL.

“*A BATCH SIZE OF 256 AND 100 EPOCHS ARE USED.

80 80 100

“*AFTER EVALUATING THE MODEL ON TEST DATA, 28.16% LOSS & 94.39% ACCURACY WAS

ACHIEVED.

o
g o
------



Table 1. Confusion matrix for the model

Table 2. Performance measure indices

PERFORMANCE

EVALUATION

Class 1 Class 2 Class 3 Class Precision Recall F1-score Support
. (Glioma) (Meningioma) (Pituitary) g?ss 1 0.88 085 087 103
: 38 12 3 (Glioma)
(Glioma) Class 2
Class 2 Meninoi 0.94 0.95 0.94 226
(Meningioma) 13 213 0 ( eélll nglzlna)
ass :
o 0.98 0.99 0.99 171
(lgtlsis;?y) 0 1 170 (Pituitary)
Precision = True Positive
+*500 IMAGES ARE USED FOR TESTING. True positive + False Positive
+*MODEL IDENTIFIES 3 CLASSES. T L
rue Positive
Recall =

True positive + False Negative

“*PITUITARY IS IDENTIFIED MORE ACCURATELY.

Precision * Recall

Fl-score = 2 X

Precision + Recall T
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PERFORMANCE

EVALUATION

SO0 **REPRESENTS A PLOT OF THE TRUE POSITIVE RATE
0.975 (Sensitivity) VERSUS THE FALSE POSITIVE RATE (100-
, 0950 Specificity).
(L]
0925 “+*AREA UNDER THE ROC CURVE(AUC) IS A MEASURE OF
>
= 0.900 1 HOW WELL THE MODEL IS DISTINGUISHING
£ aant BETWEEN DIFFERENT.
g * * micro-average ROC curve (area = 0.99)
= . * = macro-average ROC curve (area = 0.99) o
0.850 —— ROC curve of class 1 (area = 0.98) **THE CLOSER THE ROC IS TO THE UPPER LEFT
0.825 A — ROC curve of class 2 (area = 0.99) CORNER, THE HIGHER THE OVERALL ACCURACY[11].
=== ROC curve of class 3 (area = 1 00)
0.800 + !

0000 0025 0050 0075 0100 0125 0150 0175 0200
False Positive Rate

Fig. 5. ROC (Receiver Operating Characteristic) curve of the
system
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PERFORMANCE
EVALUATION

Table 3. Comparison with existing methods in testing phase

Methods Average Precision (%)
CBIR [4] 89.3

CBIR with BoVW [35] 91

CBIR with BoVW and REML [6] 93.1

Proposed model using CNN 93.33

“*COMPARED WITH SEVERAL METHODS PROPOSED IN DIFFERENT PAPERS USING SAME
DATASET.

“*HIGHER ACCURACY IS OBTAINED BY OUR PROPOSED METHOD.
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CONCLUSION

“*THIS METHOD SIGNIFICANTLY CLASSIFIES AMONG THREE IMPORTANT TUMOR
CLASSES.

“*THIS MODEL CONCENTRATE ON THE MOST IMPORTANT PATTERNS DURING
TRAINING PHASE.

“*ACQUIRED 94.39% ACCURACY & AN AVERAGE OF 93.33% PRECISION.

“*THIS MODEL CAN BE GENERALIZED TO USE ON DATASET WITH MORE TUMOR
CLASSES.
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THANK YOU

ANY QUESTION?




